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Abstract 

 A method for automatic analysis of time-oriented 
clinical narratives would be of significant practical 
import for medical decision making, data modeling   
and biomedical research. This paper proposes a ro-
bust corpus-based approach for temporal analysis of 
medical discharge summaries. We characterize tem-
poral organization of clinical narratives in terms of 
temporal segments and their ordering.  We consider 
a temporal segment to be a fragment of text that does 
not exhibit abrupt changes in temporal focus. Our 
method derives temporal order based on a range of 
linguistic and contextual features that are integrated 
in a supervised machine-learning framework. Our 
learning method achieves 83% F-measure in tempo-
ral segmentation, and 78.3% accuracy in inferring 
pairwise temporal relations. 
  
I. Introduction 
Temporal analysis plays a key role in automatic 
processing of clinical data.  A large body of research 
is concerned with reasoning about time-oriented 
clinical data in the context of medical decision mak-
ing, data modeling and biomedical research.1 
 
In some cases, relevant temporal information is di-
rectly available in a medical record and can be read-
ily used for subsequent analysis. Consider, for in-
stance, a database record of a laboratory test; time 
information is likely to be stored in one of the fields 
of this record, and can be fetched on demand.  This 
access strategy, however, is clearly not suitable for 
analyzing temporal flow in discharge summaries and 
other clinical narrative records. In a typical narrative, 
absolute temporal markers are sparse, and under-
standing of a temporal flow requires inference over 
subtle contextual cues. 
 
One possible strategy for interpreting temporal in-
formation in a clinical narrative is to employ existing 
tools for temporal analysis developed in the natural 
language community. The functionality of these tools 
include extraction of temporal expressions,2 time 
stamping of event clauses,3 and temporal ordering of 
events.4,5  In practice, however, the accuracy of these 
systems is not sufficient for robust analysis of clinical 
data. Moreover, most of these methods have been 
developed for newspaper documents.  A marked dif-
ference in text organization between clinical narra-
tives and standard newspaper collections calls for 

new methods of temporal analysis. First steps in this 
direction have been taken by Zhou et al. who develop 
a rule-based system for temporal information extrac-
tion and reasoning. 6 
 
This paper proposes a robust machine-learning ap-
proach for temporal analysis of medical discharge 
summaries. We characterize temporal organization of 
clinical narratives in terms of temporal segments and 
their ordering.  We consider a temporal segment to be 
a fragment of text that does not exhibit abrupt 
changes in temporal focus.  For instance, a medical 
discharge summary may contain segments describing 
a patient's admission, his previous hospital visit, and 
original symptoms' onset.  Each of these segments 
corresponds to a different time frame, and is clearly 
delineated as such in a text. 
 
Our ultimate goal is to automatically identify tempo-
ral segmentation in clinical narratives and induce 
their ordering.  Our key assumption is that temporal 
progression is reflected in a wide range of linguistic 
features and contextual dependencies.  For instance, 
given a pair of adjacent segments, the temporal ad-
verb next hospital visit in the second segment is a 
strong predictor of precedence relation.  We hypothe-
size that temporal segmentation and ordering can be 
learned from a corpus of annotated summaries, based 
on a set of automatically extracted features. 
 
In the following section, we introduce our temporal 
annotation scheme and motivate its benefits. Next we 
describe a corpus of discharge summaries annotated 
with temporal information, and present our methods 
for temporal segmentation and ordering. We con-
clude the paper by presenting and discussing our re-
sults. 
 
II. Temporal Annotation Scheme 
We view a clinical narrative as a linear sequence of 
temporal segments. Temporal focus is retained within 
a segment, but radically changes in between seg-
ments.7 The length of a segment can range from a 
single clause to a sequence of adjacent sentences. 
Table 1 shows a discharge summary marked with 
temporal segment boundaries. Consider as an exam-
ple the last segment in this text.  This segment de-
scribes an examination of a patient, and includes sev-
eral events and states (i.e., an abdominal and neu-
rologic examination) which belong to the same time 
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frame.  Temporal progression of these events is not 
outlined in the text, and therefore we treat them as 
one segment. 
 
Given a pair of segments, we categorize it to one of 
the three ordering relations: BEFORE, AFTER or 
INCOMPARABLE.  The first two relations capture 
temporal precedence.  For instance, the pair of seg-
ments (S1, S5) from Table 1 belongs to the AFTER 
category because the event of admission (S1) hap-
pened after the tests described in S5. The pair (S1, 
S13) stands in the BEFORE relation, since the patient 
was first admitted to the hospital (S1) and then exam-
ined (S13). We cannot always induce the precedence 
relation between two segments.  For instance, con-
sider the segments S5 and S7, which describe pa-
tient's previous tests and the onset of eczema.  Any 
order between the two events is consistent with our 
interpretation of the text; therefore we cannot deter-
mine the precedence relation. In such cases, a pair 
stands in the INCOMPARABLE relation. 
 
In contrast to many existing temporal representa-
tions,8,9 our annotation scheme is coarse: it does not 
capture event overlap, and distinguishes only a subset 
of commonly used ordering relations.  Our choice of 
this representation, however, is not arbitrary. These 
relations are shown to be useful in processing medi-
cal discourse and can be reliably recognized by hu-
mans.  Moreover, the distribution of event ordering 
links under a more refined annotation scheme, such 
as TimeML, shows that our subset of relations covers 
a vast majority of annotated links. 9 

 
Table 1: Fragment from a discharge summary with 

four segments 
S1: A 32-year-old woman was admitted to the hospital because 
of left subcostal pain, bouts of fever, and a mass in the left 
hepatic lobe. 
S5: Three months before admission an evaluation elsewhere 
included an ultrasonographic examination, a computed tomo-
graphic (CT) scan of the abdomen, and a magnetic resonance 
imaging (MRI) scan. 
S7: She had a history of eczema and of asthma. 
S13: On examination the patient was slim and appeared well. 
Scaling eczematous plaques were present on the hands and 
elbows. An abdominal examination revealed a soft systolic 
bruit in the midepigastrium that overlay a firm, nontender mass. 
A rectal examination was normal; a stool specimen was nega-
tive for occult blood. The arms and legs were normal, and a 
neurologic examination was normal. 

 

III. Methods 
A. Data 
We compiled a corpus of medical discharge summa-
ries from the on-line edition of The New England 
Journal of Medicine (NEJM).10 The summaries are 
written by physicians of Massachusetts General Hos-
pital.  The summaries are edited to follow a particular 

grammatical and narrational style, which distinguish 
them from a typical discharge summary written by a 
physician.  While processing an unedited discharge 
summary is a more challenging task, the ability to 
temporally order an NEJM summary is the first step 
towards this goal. 
 
A typical summary describes an admission status, 
previous diseases related to the current conditions, 
treatments, family history, and the current course of 
treatment. For privacy protection, names and dates 
are removed from the summaries before publication. 
 
The average length of a summary is 47 sentences. 
The summaries are written in the past tense, and a 
typical summary does not include instances of the 
past perfect. The summaries do not follow a chrono-
logical order. The ordering of information in this 
domain is guided by stylistic conventions (i.e., symp-
toms are presented before treatment) and the rele-
vance of information to the current conditions (i.e., 
previous onset of the same disease is summarized 
before the description of other diseases). 
 
i. Annotating Temporal Segmentation 
A machine-learning approach for temporal segmenta-
tion requires annotated data for supervised training. 
We first conducted a pilot study to assess the human 
agreement on the task. We hired two annotators to 
manually segment a portion of our corpus.  The anno-
tators were provided with two-page instructions that 
defined the notion of a temporal segment and in-
cluded examples of segmented texts. Each annotator 
segmented eight summaries which on average con-
tained 49 sentences.  The first annotator created 168 
boundaries, while the second created  224.  We com-
puted agreement using the Kappa coefficient. The 
observed value of Kappa 0.71 indicates a reasonable 
inter-annotator agreement, and confirms our hypothe-
sis about reliability of temporal segmentation. 
 
Once we established high inter-annotator agreement 
on the pilot study, one annotator segmented the re-
maining 52 documents in the corpus.  The annotator 
on average marked 20 boundaries per document.  The 
average length of a segment is three sentences. While 
80% of the boundaries occurred at the end of sen-
tences, the rest of the boundaries were placed within 
a sentence, on the boundary of syntactic clauses.  
Among 3,297 potential boundaries, 1,178 (36%) were 
identified as segment boundaries by the annotator. 
 
ii. Annotating Temporal Ordering 
First we investigated the inter-annotator agreement 
on the ordering task. Two human annotators ordered 
segments from five manually segmented summaries, 
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with an average length of 20 segments. We computed 
the agreement between human judges by comparing 
the transitive closure of the derived orderings which 
consists of 1,331 ordered pairs. The annotators 
achieved a surprisingly high agreement with a Kappa 
value of 0.98. 
 
After verifying a human agreement on this task, one 
of the annotators ordered segments in another 25 
summaries.  Our corpus consists of 6,544 ordered 
segment pairs, including pairs derived through transi-
tive closure. The BEFORE relation is prevalent – it 
accounts for 72% of the pairs.  The AFTER relation 
covers 12% of the pairs, and 16% of the pairs are not 
comparable. 
 
B. Method for Temporal Segmentation 
Our first goal is to automatically predict shifts in 
temporal focus indicative of segment boundaries.  
Linguistic studies show that speakers and writers 
employ a wide range of language devices to signal 
change in temporal discourse.11 For instance, the 
presence of the temporal anchor last year indicates 
the lack of temporal continuity between the current 
and the previous sentence. However, many of these 
predictors are heavily context-dependent, and thus 
cannot be considered independently. Instead of 
manually crafting complex rules controlling feature 
interaction, we opt to learn them from the data. 
 
We model temporal segmentation as a binary classi-
fication task. Given a set of candidate boundaries 
(i.e., sentence boundaries), our task is to select a sub-
set of the boundaries that delineate temporal segment 
transitions. We assume that every boundary is repre-
sented by a vector of features that are relevant to the 
segmentation decision. We learn the weight of each 
feature and their optimal combination in a supervised 
discriminative framework. In our experiments we 
used the publicly available BoosTexter classifier.12 
 
To implement this approach, we first identify a set of 
potential boundaries. Our analysis of the manually-
annotated corpus reveals that boundaries can occur 
not only between sentences, but also within a sen-
tence, at the boundary of syntactic clauses. We auto-
matically segment sentences into clauses using a ro-
bust statistical parser.13 Next, we encode each bound-
ary as a vector of features (see descriptions below). 
Given a set of annotated examples, we train a classi-
fier to learn the feature weights. Once the classifier is 
trained, we can use it to predict boundaries in new, 
unseen narratives.  In the rest of the section, we de-
scribe features used for boundary representation. 
 

Lexical Features Temporal expressions, such as 
tomorrow and earlier, are among the strongest mark-
ers of temporal discontinuity.11 In addition to a well-
studied set of domain-independent temporal markers, 
there are a variety of temporal markers specific to the 
medical discourse. For instance, the phrase initial 
hospital visit functions as a time anchor in a dis-
charge summary.   See Table 2 for an example of 
highly-ranked lexical features learned by our algo-
rithm. 
 

Table 2: Highly ranked features selected automati-
cally by the classifier for temporal segmentation.  

For presentation purposes, the features are manually 
grouped based on their semantic role.  

 
To automatically extract these expressions, we pro-
vide a classifier with unigrams, bigrams and trigrams 
from each of the candidate sentences preceding and 
anteceding the candidate segment boundary. 
 
Topical Continuity  Temporal segmentation is 
closely related to topical segmentation.14 A typical 
discharge summary covers several topics that span 
over different time periods, ranging from family his-
tory to the current treatment. Thus, predicting these 
topical transitions can help us to locate boundaries of 
temporal segments. 
 
We quantify the strength of a topic change by com-
puting a cosine similarity between sentences border-
ing the proposed segmentation. This measure is 
commonly used in topic segmentation under the as-
sumption that change in lexical distribution corre-
sponds to topical change. 
 
Positional Features We observe a correlation be-
tween the position of the sentence in a discharge 
summary and the likelihood that it constitutes a 
boundary. This property is related to patterns in dis-
course organization of a document as a whole. Some 
parts of the document are more likely to exhibit tem-
poral change than others. For instance, a medical 
discharge summary first discusses various develop-
ments in the patient’s clinical course, and then fo-
cuses on his current conditions. Thus, the first part of 
the summary contains many short temporal segments. 

Type Preceding Following 
Relative tem-
poral anchors 

until, when later, next, subse-
quently, after, fol-
lowed by  

Absolute 
temporal 
anchors 

pm, day, during days, years, one 
month, hospital day 

Other terms showed, recurred,  
was transferred 

admission, physical  
examination 
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We encode positional features by recording the rela-
tive position of a sentence in a discharge summary. In 
addition, we include the half and the quarter to which 
the sentence belongs. 
 
Syntactic Features Because our segment boundaries 
are considered at the clausal, rather than at the sen-
tence level, the syntax surrounding a hypothesized 
boundary may be indicative of temporal shifts.  We 
represent this feature with a sequence of part-of-
speech tags surrounding the potential boundary.  
 
All the feature vectors are available on the website.15 

 

C.  Learning to Order Segments 
Our next goal is to find an acceptable order among 
temporal segments.  One possible approach is to cast 
this task as a standard classification task: predict an 
ordering for each segment pair based on their attrib-
utes alone. If a pair contains a temporal marker, like 
two days ago, then accurate prediction is feasible. In 
fact, this method is commonly used in event order-
ing.4,5 However, many segment pairs lack temporal 
markers and other explicit cues for ordering. Deter-
mining their relation out of context can be difficult, 
even for humans. Moreover, by treating each segment 
pair in isolation, we cannot guarantee that all the 
pairwise assignments are consistent with each other, 
and yield an acyclic order. 
 
Therefore, our ordering algorithm has two steps. 
First, we employ a classifier to predict an order be-
tween a pair of temporal segments. Next, we look for 
a consistent ordering that combines pairwise predic-
tions, and disallows cycles. 
 
i.  Learning Pairwise Ordering 
Given a pair of segments (i,j), our goal is to assign it 
to one of three classes: BEFORE, AFTER or 
INCOMPARABLE.  We generate the training data 
by using all pairs of segments (i,j) that belong to the 
same document, such that i appears before j in the 
text. We represent each pair of segments by a vector 
of automatically extracted features. Similarly to the 
temporal segmentation task, we apply a discrimina-
tive classifier to train the model. Features used in our 
model are summarized below: 
 
Lexical Features This class of features captures 
temporal markers and other phrases indicative of or-
der between two segments. Representative examples 
in this category include domain-independent cues 
like years earlier and domain-specific markers like 
during next visit. 
 

To automatically identify these phrases, we provide a 
classifier with two sets of n-grams extracted from the 
first and the second segment. The classifier automati-
cally learns phrases with high predictive power. 
 
Temporal Anchor Comparison Temporal anchors 
are one of the strongest predictors of the event order-
ing in a summary. For instance, medical discharge 
summaries use phrases like two days before admis-
sion to express temporal progression. If the two seg-
ments contain temporal anchors, we can determine 
their ordering by comparing these anchors.  We iden-
tified a set of temporal anchors commonly used in the 
discharge summaries, and devised rules for their 
comparison. 
 
Segment Adjacency Feature By analyzing a corpus 
of discharge summaries, we found that pairs of adja-
cent segments are likely to follow a chronological 
progression.11 To encode this information, we include 
a binary feature that captures the adjacency relation 
between two segments. 
 
ii.  Finding Consistent Ordering 
Given the scores produced by a pairwise classifier, 
our task is to construct a consistent ordering. The 
need to perform this additional step arises because 
pairwise decisions may be inconsistent with each 
other. For instance, the classifier may predict the 
BEFORE relation for the pairs (S1, S2) and (S2, S3), 
but assign the AFTER relation for (S1, S3), thus 
yielding an ordering cycle. When resolving such con-
flicts, our priority is to retain relations that the classi-
fier predicted with high confidence. The confidence 
of the classifier is reflected in its score. Therefore, 
our goal is to find a consistent assignment with the 
highest score. 
 
The consistent ordering assignment can be encoded 
as a directed acyclic graph wherein nodes correspond 
to temporal segments, and the direction of the edge 
captures the ordering relation. We search for an op-
timal ordering graph using a greedy strategy. The 
algorithm begins by sorting pairwise relations (edges) 
based on their score. Starting with an empty graph, 
we add one edge at a time, without violating the con-
sistency constraints. At each step we expand the 
graph with its transitive closure. We continue this 
process until all the edges have been considered.  
While this greedy strategy is not guaranteed to find 
the optimal solution, it finds a close approximation to 
the optimal graph.16 
 
IV. Evaluation Set-Up 
Given the limited size of the available annotated data, 
we evaluated our system in the leave-one-out cross-
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validation scenario. In this framework, a model is 
tested on one narrative, while trained on the rest of 
the documents. This process is repeated for each 
document in a corpus, and the accuracy is averaged 
over all the splits. 
 
Using cross-validation, we evaluated the temporal 
segmentation algorithm on the corpus of 60 manu-
ally-segmented summaries. The segmentation algo-
rithm achieves the performance of 83% F-measure 
(recall 78% and precision 89%).  
 
Using the same cross-validation framework, we as-
sessed the accuracy of the ordering component. The 
algorithm achieves 78.3% accuracy on the ternary 
relation classification.  As a point of comparison, we 
consider a baseline which assigns the BEFORE rela-
tion to all the pairs. In other words, the baseline as-
sumes that a discharge summary follows chronologi-
cal order. The accuracy of this baseline is 72.2%.  
Our automatic method outperforms the majority 
baseline by 6.1%  
 
V. Discussion and Conclusions 
 This paper introduced a new method for temporal 
ordering of discharge summaries. Temporal analysis 
in this domain is challenging in several respects: a 
typical summary exhibits no significant tense and 
aspect variations, and contains few absolute time 
markers.  We demonstrate that humans can reliably 
mark temporal segments, and determine segment 
ordering in this domain.  Our learning method 
achieves 83% F-measure in temporal segmentation, 
and 78.3% accuracy in inferring temporal relations 
between two segments. 
 
Most work on temporal analysis is performed on a 
finer granularity than proposed here. 6 However, the 
granularity of our representation facilitates temporal 
analysis, and is especially suitable for domains with 
sparse temporal anchors. The output of our algorithm 
provides useful information for processing clinical 
narratives. It can be also used as a preprocessing step 
for more refined methods to reduce the complexity of 
their analysis.     
 
The strength of our approach lies in its ability to si-
multaneously optimize pairwise ordering preferences 
and global constraints on the consistency of the or-
dering. While the importance of global constraints 
has been previously validated in symbolic systems 
for temporal analysis,6 existing corpus-based ap-
proaches operate at the local level.4,5 The improve-
ments achieved by a global model motivate its use as 
an alternative to existing pairwise methods. For a 
more detailed investigation of global inference 

strategies for segment ordering, see the following 
paper.17 
 
Finally, we collected and annotated corpus of medi-
cal discharge summaries. This is the first publicly 
available corpus of clinical narratives annotated with 
temporal information.15 We believe that this corpus 
can be used as a benchmark for evaluating ordering 
algorithms in the medical domain, thereby facilitating 
the development of corpus-based methods for tempo-
ral analysis of clinical narratives. 
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